ESR (Electron Spin Resonance) and EPR (Electron Paramagnetic Resonance) are used interchangeably to describe the same spectroscopic technique. The reason for the two different names can be traced to the historical development of the field and some of the interesting stories surrounding it. Originally, the technique was called ESR, or electron spin resonance. It was discovered in the mid-20t...
The Scanning Electron Microscope (SEM) is a powerful tool for various applications in material sciences, life sciences, and other fields. Different kinds of detectors have been developed to obtain more information and improve the performance of SEM. The following are a few common types of SEM detectors: Backscattered Electron Detector (BSE): BSE detectors are used to detect electrons scatte...
Scanning Electron Microscopy (SEM) is based on the principle of using a focused beam of high-energy electrons to probe the surface of a sample and produce a high-resolution detailed image. Electron Source: SEM works by using an electron source, typically a heated tungsten filament or a field emission gun, to produce a beam of electrons. Electron Beam Generation: The electron source e...
EPR (Electron Paramagnetic Resonance) Spectroscopy, also known as Electron Spin Resonance (ESR) Spectroscopy, is a technique used to study the electronic structure of paramagnetic species. There are two main types of EPR spectroscopy: Continuous Wave (CW) EPR spectroscopy and Pulsed EPR spectroscopy. Continuous wave (CW) EPR Spectroscopy: In continuous wave EPR spectroscopy, a microw...
The scanning electron microscope (SEM) is an advanced scientific instrument to image and analyze high-resolution samples. Several countries in the Middle East have well-established scientific research institutes and universities, with Saudi Arabia, the United Arab Emirates (UAE), Turkey, Egypt, and Iraq investing heavily in scientific research and development, including scanning electron microscop...
In microscopic imaging, two dominant techniques have revolutionized our understanding of the complexity of the nanoworld: scanning electron microscopy (SEM) and transmission electron microscopy (TEM). These powerful tools have opened up new avenues for a variety of scientific disciplines, allowing researchers to delve into the composition, structure, and behavior of a wide range of materials. We c...
Electron paramagnetic resonance (EPR) spectroscopy is a powerful experimental technique for studying paramagnetic species' electronic structure and properties. In EPR spectroscopy, the g-value plays a crucial role in understanding the behavior and environment of unpaired electrons in paramagnetic systems. This article aims to provide an overview of g-values and their significance in EPR spectrosco...
Scanning electron microscopy (SEM) is a powerful technique for imaging and analyzing high-resolution nanoscale materials. Electron detectors are important components of the SEM, and they are responsible for capturing electrons and converting them into electrical signals. To obtain accurate and reliable results, it is crucial to choose the right electron detector. This article will discuss the key ...