CIQTEK Sponsored Excellent Oral Presentation Award at the 12th Asia-Pacific EPR Symposium (APES2022)
CIQTEK Sponsored Excellent Oral Presentation Award at the 12th Asia-Pacific EPR Symposium (APES2022)
November 14, 2022
The Excellent Oral Presentation Awards are presented during the closing ceremony of the 12th Asia-Pacific EPR Symposium (APES2022) on November 7th, 2022. CIQTEK is pleased to sponsor this award to scientists who have contributed significantly to electron paramagnetic resonance (EPR or ESR) research. This time, congratulations to Dr. Shen Zhou from the National University of Defense Technology, Dr. Sergey Veber from the International Tomography Center of SB RAS, and Dr. Zhiyuan Zhao from the University of Science and Technology of China for winning the awards.
APES 2022, Webinar, November 4-7, 2022
CIQTEK is happy to sponsor the APES 2022 during November 4-7, 2022. The symposium this year is an online event for international speakers and participants, a new start for Asia-Pacific EPR/ESR Society in the post-epidemic era. The main aims of APES 2022 are to bring together EPR/ESR spectroscopists and to promote and facilitate collaboration among the EPR/ESR community. APES 2022 is intended to stimulate discussions on the forefront of research in all aspects of EPR/ESR ranging from theoretical and experimental advances in CW/Pulsed EPR, high frequency, and high field EPR, ENDOR, PEDLOR/DEER, time-resolved EPR, FMR, MRI, ODMR to applications in medicine, biology, chemistry, materials science and nanotechnology.
On November 6, Dr. Sergey Veber gave a presentation entitled "X-band EPR spectrometer based on MW bridge with 300 W solid-state amplifier and AWG unit".
Abstract of the Presentation Technical advances in modern EPR spectrometers set up the frontiers of EPR-related methodologies and approaches. Considering EPR spectrometers of conventional microwave bands, such as X- and Q-, high-power amplifiers, arbitrary wave generators, and fast digitizers are the essential units required for up-to-date pulse EPR techniques. Herein we describe an X-band EPR spectrometer constructed in the Magnetic Resonance Laboratory of Biomolecular Systems (NIOCH SB RAS) and featuring all the required equipment to perform state-of-art pulse EPR experiments. Among the general construction of the spectrometer, the scheme of the microwave bridge is considered in detail including a pulse-forming and pulse-monitoring unit, and a low-noise amplifier with a pulse protection circuit. A modular open-source software "Atomize" (https://github.com/Anatoly1010/Atomize) is used to control the spectrometer including AWG and fast digitizer cards featuring high-speed data streaming. A wideband dielectric EPR resonator was developed to fit the requirements for AWG experiments with chirp pulses. The spectrometer is designed to have a high dynamic range, low coherent noise and to capture the direct dimension efficiently. These capabilities were demonstrated with both rectangular and AWG pulse experiments. This work was supported by the Ministry of Science and Higher Education of the Russian Federation (grant 14.W03.31.0034)
Biography of Dr. Sergey Veber Dr. Sergey Veber received his Ph.D. in 2009 in chemical physics from the International Tomography Center SB RAS (ITC). Since 2005, he collaborated with the Weizmann Institute of Science (Israel), the Free University of Berlin, the Max-Planck-Institute for Chemical Energy Conversion, and Helmholtz-Zentrum Berlin (Germany). He is head of the group of THz-induced processes, at the Laboratory of EPR spectroscopy in ITC, Novosibirsk. He is the author of more than 70 articles. In 2016 he received the Young Investigator Award of the International EPR (ESR) Society for “his considerable contribution to the investigation of novel thermo- and photoswitchable Cu(II)-based magnetoactive compounds by multifrequency EPR”. His research interests are EPR in studies of molecular magnets, phase transitions in magnetoactive compounds, and electronics engineering of EPR-related equipment. His current focus is the use of THz laser radiation applied to molecular magnets and spin qubits, where he is developing EPR-based experimental approaches at the Novosibirsk Free Electron Laser facility.
X-band Benchtop Electron Paramagnetic Resonance / Electron Spin Resonance (EPR / ESR) Spectroscopy The CIQTEK EPR200M is a newly designed benchtop EPR spectrometer specializing in the qualitative and quantitative analysis of free radicals, special valence transition metal ions, and material doping and defects. It is an excellent research tool for real-time monitoring of chemical reactions, in-depth evaluation of material properties, and exploration of pollutant degradation mechanisms in environmental science. The EPR200M adopts a compact design and highly integrates the microwave source, magnetic field, probe, and main controller, ensuring sensitivity and stability while being compatible with diverse experimental needs. The user-friendly interface allows even first-time users to get started quickly, making this advanced instrument truly easy to use. Email our experts for custom solutions: info@ciqtek.com
The CIQTEK EPR200-Plus Spectroscopy provides professional continuous wave electron paramagnetic resonance solutions for industrial and academic users. >> EPR200-Plus Accessories: Dual Mode Resonator, High-temperature System, Liquid Nitrogen Variable Temperature With Cryostat, Liquid helium Variable Temperature, Liquid Helium-free Dry Cryogenic System, Time-resolved EPR System, Goniometers, Irradiation system, Flat cell. Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a powerful analytical method to study the structure, dynamics, and spatial distribution of unpaired electronics in paramagnetic substances. It can provide in-situ and non-destructive information on electron spins, orbitals, and nuclei at the microscopic scale. EPR spectroscopy is particularly useful for studying metal complexes or organic radicals so it has important applications in the fields of chemistry, materials, physics, environment, etc.
CIQTEK X-band pulse electron paramagnetic resonance (EPR or ESR) spectroscopy EPR100 supports both continuous-wave EPR and pulse EPR functions, satisfying general CW EPR experiments while performing T1 /T2 / ESEEM (electron-spin echo envelope modulation) / HYSCORE (hyperfine sublevel correlation) and other pulsed EPR tests, which can achieve higher spectral resolution and reveal ultra-fine interactions between electrons and nuclei, thus providing users with more information about the structure of matter. >> Optionally equipped with a 4-300 K variable temperature device to enable the detection of paramagnetic substances at ultra-low (high) temperatures.>> EPR100 Accessories: Dual Mode Resonator; High-temperature System; Liquid Nitrogen Variable Temperature With Cryostat; Liquid Helium Variable Temperature; Liquid Helium-free Dry Cryogenic System; Time-resolved EPR System; ELDOR System; ENDOR System; Goniometers; Irradiation System; Flat Cell.
W-band (94 GHz) high-frequency electron paramagnetic resonance (EPR or ESR) spectroscopy compatible with both continuous wave and pulsed EPR test functions EPR-W900 is paired with a slit-type superconducting magnet with a maximum magnetic field of 6 T and can perform variable temperature experiments from 4-300 K.It also has the same software operating platform as the CIQTEK X-band EPR100, providing users with a user-friendly experience.Compared with the traditional X-band EPR technology, high-frequency EPR has many advantages and has important applications in biology, chemistry, and materials.