CIQTEK EPR helps with diagnosis and treatment integration research
Founded in 1905, the National University of Singapore (NUS) is one of the finest research universities in Singapore and ranks among the world's top researchers in the fields of chemistry and materials science. The main research direction of Prof. Chen Xiaoyuan's group, which introduced the CIQTEK EPR200M, is diagnostic and therapeutic integration. The research utilizes nanotechnology to achieve precise delivery of drugs, including small molecule drugs, peptides and mRNAs, etc. Combined with multimodal imaging technology, the group evaluates the tissue distribution and pharmacokinetic process of drugs in vivo and ultimately realizes the integration of diagnosis and treatment.
Jianhua Zou, the relevant person in charge of the project team, said: The stability, sensitivity index and data accuracy of the CIQTEK EPR200M product are fully in line with the requirements of the project team's experimental testing. The team will use the device to test the generation or scavenging of a variety of reactive oxygen species, such as monoclinic oxygen, superoxide radicals, hydroxyl radicals, etc. By measuring the changes in the signal parameters of these radical substances, EPR can dynamically and quantitatively monitor the increase or decrease of their concentration in biological samples, so as to test the effectiveness of antioxidant substances in scavenging reactive oxygen species.
X-Band Benchtop EPR Spectroscopy | EPR200M
The EPR200M is a newly designed and engineered benchtop electron paramagnetic resonance spectrometer. Based on high sensitivity, high stability, and a variety of experimental scenarios, it provides a cost-effective, low-maintenance, simple and easy-to-use experience for every EPR experimental user.
CIQTEK X-band pulse electron paramagnetic resonance (EPR or ESR) spectroscopy EPR100 supports both continuous-wave EPR and pulse EPR functions. In addition to supporting conventional continuous-wave EPR experiments, the EPR100 can also finely control and measure electron spin quantum states using specific pulse sequences. This enables pulse EPR tests such as T1, T2, ESEEM (electron spin echo envelope modulation), HYSCORE (hyperfine sublevel correlation), etc. The EPR100 offers a comprehensive range of optional accessories, such as ENDOR, DEER, TR-EPR, and AWG modules, which fully meet the requirements of all current pulsed experimental modes. When paired with a variable temperature system, it enables the detection of paramagnetic substances at ultralow temperatures. Pulsed EPR provides higher spectral resolution, revealing the hyperfine interactions between electrons and nuclei and delivering more detailed structural information. This capability is irreplaceable and crucial in scientific research areas such as materials science, biomolecular structure analysis, etc.
The CIQTEK EPR200-Plus is a floor-standing EPR spectrometer with enhanced sensitivity for robust continuous wave (CW) EPR measurements. The model can be customized with three different sizes of electromagnets. An upgraded version, CIQTEK EPR300, is another floor-standing CW EPR spectroscopy with higher sensitivity and optional Q-band extension. >> EPR200-Plus Accessories: Dual Mode Resonator, High-temperature System, Liquid Nitrogen Variable Temperature With Cryostat, Liquid helium Variable Temperature, Liquid Helium-free Dry Cryogenic System, Time-resolved EPR System, Goniometers, Irradiation system, Flat cell. Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a powerful analytical method to study the structure, dynamics, and spatial distribution of unpaired electronics in paramagnetic substances. It can provide in-situ and non-destructive information on electron spins, orbitals, and nuclei at the microscopic scale. EPR spectroscopy is particularly useful for studying metal complexes or free radicals so it has important applications in the fields of chemistry, materials, physics, environment, etc.
X-band Benchtop Electron Paramagnetic Resonance or Electron Spin Resonance (EPR, ESR) Spectrometer The CIQTEK EPR200M is a newly designed benchtop EPR spectrometer specializing in the qualitative and quantitative analysis of free radicals, transition metal ions, material doping and defects. It is an excellent research tool for real-time monitoring of chemical reactions, in-depth evaluation of material properties, and exploration of pollutant degradation mechanisms in environmental science. The EPR200M adopts a compact design and highly integrates the microwave source, magnetic field, probe, and main controller, ensuring sensitivity and stability while being compatible with diverse experimental needs. The user-friendly interface allows even first-time users to start quickly, making the EPR instrument truly easy to use. ★ Email our experts for custom solutions, quotes, or detailed brochures: info@ciqtek.com
Modernize your old EPR spectroscopy for the cutting-edge EPR research This Modernize will bring you features including: ▶ Higher Sensitivity: Ultra-low noise microwave source and signal detection technology. ▶ Better Resolution: Precise magnetic field control technology ▶ Excellent Compatibility: Compatible with a wide range of EPR spectrometers. ▶ Fast Delivery: Complete delivery of the modernized hardware within 2 to 6 months. ▶ High-quality Service: On-site installation and 2-year warranty. ★ Email us for more details: info@ciqtek.com
The CIQTEK EPR300 Electron Paramagnetic Resonance (EPR) Spectrometer incorporates the latest microwave technology and an ultra-high-performance signal processing unit, significantly enhancing detection sensitivity and signal-to-noise ratio to an unprecedented level. It enables precise detection and analysis of unpaired electron signals even at extremely low spin concentrations, providing a novel approach for exploring microscopic physical and chemical properties of low-concentration substances such as free radicals and metal ions. Additionally, the EPR300 supports easy upgrades from X Band to Q Band, achieving higher g-value resolution, which is advantageous for detecting anisotropic samples. The EPR300 establishes a solid experimental foundation for cutting-edge research in life sciences, materials science, chemistry, and physics, driving scientific discoveries to new milestones.