When using a Scanning Electron Microscope (SEM), you often hear about backscattered electrons (BSE) and secondary electrons (SE). But what exactly are they? And why should you care? If you're diving into electron microscopy, understanding these two types of electrons is essential for interpreting images and optimizing results. In this blog, we will break down the difference between backscattered e...
Electron Paramagnetic Resonance (EPR) spectroscopy has become an essential tool in the study of transition metal complexes. This technique, capable of providing detailed insights into the electronic structures and dynamic behavior of paramagnetic species, has made significant strides in recent years. EPR is particularly valuable in studying transition metal ions, which play crucial roles in a wide...
Imagine trying to understand the inner workings of a complex biological system, where the smallest particles, such as free radicals or metal ions, play a crucial role. These particles, though invisible to most traditional methods, hold the key to understanding processes like metabolism, oxidative stress, and cellular communication. This is where Electron Paramagnetic Resonance (EPR) Spectroscopy c...
Electron Paramagnetic Resonance (EPR) spectroscopy remains an indispensable tool in the investigation of materials with unpaired electrons. Whether for fundamental research or industrial applications, recent breakthroughs are driving the technology into a new era of accessibility and precision. Here, we explore these cutting-edge developments in the EPR instrument area and examine how they are red...
Electron Paramagnetic Resonance (EPR) spectroscopy is a critical technique for studying the electronic properties of paramagnetic species, and temperature control plays a central role in the accuracy and reliability of EPR measurements. Variable Temperature (VT) Systems allow researchers to investigate temperature-dependent phenomena, providing a direct window into spin dynamics, phase transitions...
Introduction to EPR Spectroscopy and Its European Market Electron Paramagnetic Resonance (EPR) spectroscopy plays a central role in analyzing materials with unpaired electrons—ranging from transition metal complexes to free radicals in biological systems. Europe has long been a powerhouse in magnetic resonance research, with universities and research institutions across Germany, France, the ...